Radiative heat transfer in fractal structures

M. Nikbakht
Phys. Rev. B 96, 125436 – Published 27 September 2017

Abstract

The radiative properties of most structures are intimately connected to the way in which their constituents are ordered on the nanoscale. We have proposed a new representation for radiative heat transfer formalism in many-body systems. In this representation, we explain why collective effects depend on the morphology of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in many-body systems. We investigated the radiative heat transfer problem in fractal (i.e., scale invariant) structures. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer and radiative cooling are studied and the results are compared for fractal and nonfractal structures. It is shown that fractal arranged nanoparticles display complex radiative behavior related to their scaling properties. We showed that, in contrast to nonfractal structures, heat flux in fractals is not of large-range character. By using the fractal dimension as a means to describe the structure morphology, we present a universal scaling behavior that quantitatively links the structure radiative cooling to the structure gyration radius.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 June 2017

DOI:https://doi.org/10.1103/PhysRevB.96.125436

©2017 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & ThermodynamicsAtomic, Molecular & OpticalCondensed Matter, Materials & Applied PhysicsGeneral PhysicsInterdisciplinary Physics

Authors & Affiliations

M. Nikbakht*

  • Department of Physics, University of Zanjan, Zanjan 45371-38791, Iran

  • *mnik@znu.ac.ir

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 12 — 15 September 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×