Compactly supported Wannier functions and algebraic K-theory

N. Read
Phys. Rev. B 95, 115309 – Published 20 March 2017

Abstract

In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n-component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K-theory, based on a ring of polynomials in e±ikx,e±iky,..., which occur as entries in the Fourier-transformed Wannier functions.

  • Received 17 August 2016

DOI:https://doi.org/10.1103/PhysRevB.95.115309

©2017 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

N. Read

  • Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 11 — 15 March 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×