• Rapid Communication

Many-electron expansion: A density functional hierarchy for strongly correlated systems

Tianyu Zhu, Piotr de Silva, Helen van Aggelen, and Troy Van Voorhis
Phys. Rev. B 93, 201108(R) – Published 19 May 2016
PDFHTMLExport Citation

Abstract

Density functional theory (DFT) is the de facto method for the electronic structure of weakly correlated systems. But for strongly correlated materials, common density functional approximations break down. Here, we derive a many-electron expansion (MEE) in DFT that accounts for successive one-, two-, three-, ... particle interactions within the system. To compute the correction terms, the density is first decomposed into a sum of localized, nodeless one-electron densities (ρi). These one-electron densities are used to construct relevant two- (ρi+ρj), three- (ρi+ρj+ρk), ... electron densities. Numerically exact results for these few-particle densities can then be used to correct an approximate density functional via any of several many-body expansions. We show that the resulting hierarchy gives accurate results for several important model systems: the Hubbard and Peierls-Hubbard models in 1D and the pure Hubbard model in 2D. We further show that the method is numerically convergent for strongly correlated systems: applying successively higher order corrections leads to systematic improvement of the results. MEE thus provides a hierarchy of density functional approximations that applies to both weakly and strongly correlated systems.

  • Figure
  • Figure
  • Figure
  • Received 11 August 2015
  • Revised 11 April 2016

DOI:https://doi.org/10.1103/PhysRevB.93.201108

©2016 American Physical Society

Authors & Affiliations

Tianyu Zhu, Piotr de Silva, Helen van Aggelen, and Troy Van Voorhis*

  • Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

  • *tvan@mit.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 20 — 15 May 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×