• Editors' Suggestion

Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy

G. Grissonnanche, F. Laliberté, S. Dufour-Beauséjour, M. Matusiak, S. Badoux, F. F. Tafti, B. Michon, A. Riopel, O. Cyr-Choinière, J. C. Baglo, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Krämer, D. LeBoeuf, D. Graf, N. Doiron-Leyraud, and Louis Taillefer
Phys. Rev. B 93, 064513 – Published 22 February 2016

Abstract

The electrical and thermal Hall conductivities of the cuprate superconductor YBa2Cu3Oy, σxy and κxy, were measured in a magnetic field up to 35 T, at a hole concentration (doping) p=0.11. In the T=0 limit, we find that the Wiedemann-Franz law, κxy/T=(π2/3)(kB/e)2σxy, is satisfied for fields immediately above the vortex-melting field Hvs. This rules out the existence of a vortex liquid at T=0 and it puts a clear constraint on the nature of the normal state in underdoped cuprates, in a region of the doping phase diagram where charge-density-wave order is known to exist. As the temperature is raised, the Lorenz ratio, Lxy=κxy/(σxyT), decreases rapidly, indicating that strong small-q scattering processes are involved.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 19 November 2015
  • Revised 29 January 2016

DOI:https://doi.org/10.1103/PhysRevB.93.064513

©2016 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

G. Grissonnanche1, F. Laliberté1, S. Dufour-Beauséjour1, M. Matusiak1,2, S. Badoux1, F. F. Tafti1, B. Michon1, A. Riopel1, O. Cyr-Choinière1, J. C. Baglo3, B. J. Ramshaw3, R. Liang3,4, D. A. Bonn3,4, W. N. Hardy3,4, S. Krämer5, D. LeBoeuf5, D. Graf6, N. Doiron-Leyraud1, and Louis Taillefer1,4,*

  • 1Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
  • 2Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-950, Poland
  • 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • 4Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
  • 5Laboratoire National des Champs Magnétiques Intenses, UPR 3228, (Centre National de la Recherche Scientifique, INSA-UJF-UPS), Grenoble 38042, France
  • 6National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA

  • *louis.taillefer@usherbrooke.ca

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 6 — 1 February 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×