Bound states of three fermions forming symmetry-protected topological phases

Chong Wang
Phys. Rev. B 91, 245124 – Published 11 June 2015

Abstract

We propose a simple theoretical construction of certain short-range entangled phases of interacting fermions, by putting the bound states of three fermions (which we refer to as clustons) into topological bands. We give examples in two and three dimensions, and show that they are distinct from any free fermion state. We further argue that these states can be viewed as combinations of certain free fermion topological states and bosonic symmetry-protected topological (SPT) states. This provides a conceptually simple understanding of various SPT phases, and the possibility of realizing them in cold atom systems. New parton constructions of these SPT phases in purely bosonic systems are proposed. We also discuss a related anomaly in two dimensional Dirac theories, which is the gravitational analog of the parity anomaly.

  • Figure
  • Figure
  • Received 14 June 2014
  • Revised 21 April 2015

DOI:https://doi.org/10.1103/PhysRevB.91.245124

©2015 American Physical Society

Authors & Affiliations

Chong Wang

  • Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 24 — 15 June 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×