• Editors' Suggestion

Charge-density-wave order with momentum (2Q,0) and (0,2Q) within the spin-fermion model: Continuous and discrete symmetry breaking, preemptive composite order, and relation to pseudogap in hole-doped cuprates

Yuxuan Wang and Andrey Chubukov
Phys. Rev. B 90, 035149 – Published 31 July 2014

Abstract

We analyze charge order in hole-doped cuprates within the the spin-fermion model. We show that a magnetically mediated interaction, which is known to give rise to d-wave superconductivity and charge order with momentum along zone diagonal, also gives rise to charge order with momenta Qx=(2Q,0) and Qy=(0,2Q) consistent with the experiments. We show that an instability towards ΔkQ=ck+QckQ with Q=Qx or Qy is a threshold phenomenon, but the dimensionless spin-fermion coupling is above the threshold, if the magnetic correlation length ξ exceeds a certain critical value. At a critical ξ, the onset temperature for the charge order terminates at a quantum-critical point distant from the magnetic one. We argue that the charge order with Qx or Qy changes sign under kk+(π,π), but |ΔkQ||Δk+(π,π)Q|. In real space, such an order has both bond and site components; the bond one is larger. We further argue that ΔkQ and ΔkQ are not equivalent, and their symmetric and antisymmetric combinations describe, in real space, incommensurate density modulations and incommensurate bond current, respectively. We derive the Ginzburg-Landau functional for four-component U(1) order parameters Δ±kQ with Q=Qx or Qy and analyze it first in mean-field theory and then beyond mean field. Within mean field we find two types of charge-density-wave (CDW) states, I and II, depending on system parameters. In state I, density and current modulations emerge with the same Q=Qx or Qy, breaking Z2 lattice rotational symmetry, and differ in phase by ±π/2. The selection of π/2 or π/2 additionally breaks Z2 time-reversal symmetry, such that the total order parameter manifold is U(1)×Z2×Z2. In state II, density and current modulations emerge with different Q and the order parameter manifold is U(1)×U(1)×Z2, where in the two realizations of state II, Z2 corresponds to either lattice rotational or time-reversal symmetry breaking. We extend the analysis beyond mean field and argue that discrete symmetries get broken before long-range charge order sets in. For state I, which, we argue, is related to hole-doped cuprates, we show that, upon lowering the temperature, the system first breaks Z2 lattice rotational symmetry (C4C2) at T=Tn and develops a nematic order, then breaks Z2 time-reversal symmetry at Tt<Tn and locks the relative phase between density and current fluctuations, and finally breaks U(1) symmetry of a common phase of even and odd components of ΔkQ at T=TCDW<Tt<Tn and develops a true charge order. We argue that at a mean field, TCDW is smaller than superconducting TSC, but preemptive composite order lifts TCDW and reduces TSC such that at large ξ charge order develops prior to superconductivity. We obtain the full phase diagram and present quantitative comparison of our results with ARPES data for hole-doped cuprates.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
19 More
  • Received 29 June 2014

DOI:https://doi.org/10.1103/PhysRevB.90.035149

©2014 American Physical Society

Authors & Affiliations

Yuxuan Wang and Andrey Chubukov

  • Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 3 — 15 July 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×