Computational study of the thermal conductivity in defective carbon nanostructures

Zacharias G. Fthenakis and David Tománek
Phys. Rev. B 86, 125418 – Published 10 September 2012
PDFHTMLExport Citation

Abstract

We use nonequilibrium molecular dynamics simulations to study the adverse role of defects including isotopic impurities on the thermal conductivity of carbon nanotubes, graphene, and graphene nanoribbons. We find that even in structurally perfect nanotubes and graphene, isotopic impurities reduce thermal conductivity by up to one half by decreasing the phonon mean-free path. An even larger thermal conductivity reduction, with the same physical origin, occurs in presence of structural defects including vacancies and edges in narrow graphene nanoribbons. Our calculations reconcile results of former studies, which differed by up to an order of magnitude, by identifying limitations of various computational approaches.

  • Figure
  • Figure
  • Figure
  • Received 15 June 2012

DOI:https://doi.org/10.1103/PhysRevB.86.125418

©2012 American Physical Society

Authors & Affiliations

Zacharias G. Fthenakis and David Tománek*

  • Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA

  • *tomanek@pa.msu.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 12 — 15 September 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×