• Editors' Suggestion

Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects

Matthias Krüger, Giuseppe Bimonte, Thorsten Emig, and Mehran Kardar
Phys. Rev. B 86, 115423 – Published 17 September 2012

Abstract

We present a detailed derivation of heat radiation, heat transfer, and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal nonequilibrium. The results can be expressed as basis-independent trace formulas in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave expansions, we transform the results for radiation, transfer, and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere, and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nanospheres is typically invalid. We derive asymptotic formulas for heat transfer and nonequilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nanosphere can levitate above a plate with the repulsive nonequilibrium force overcoming gravity, an effect that is not due to radiation pressure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 June 2012

DOI:https://doi.org/10.1103/PhysRevB.86.115423

©2012 American Physical Society

Authors & Affiliations

Matthias Krüger1, Giuseppe Bimonte2, Thorsten Emig3, and Mehran Kardar1

  • 1Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139, USA
  • 2Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario MSA, Via Cintia, I-80126 Napoli, Italy and INFN Sezione di Napoli, I-80126 Napoli, Italy
  • 3Laboratoire de Physique Théorique et Modèles Statistiques, CNRS UMR 8626, Bât. 100, Université Paris-Sud, 91405 Orsay cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 11 — 15 September 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×