• Editors' Suggestion

Single-particle Green’s functions and interacting topological insulators

V. Gurarie
Phys. Rev. B 83, 085426 – Published 28 February 2011

Abstract

We study topological insulators characterized by the integer topological invariant Z, in even and odd spatial dimensions. These are well understood in the case when there are no interactions. We extend the earlier work on this subject to construct their topological invariants in terms of their Green’s functions. In this form, they can be used even if there are interactions. Specializing to one and two spatial dimensions, we further show that if two topologically distinct topological insulators border each other, the difference of their topological invariants is equal to the difference between the number of zero-energy boundary excitations and the number of zeros of the Green’s function at the boundary. In the absence of interactions Green’s functions have no zeros; thus, there are always edge states at the boundary, as is well known. In the presence of interactions, in principle, Green’s functions could have zeros. In that case, there could be no edge states at the boundary of two topological insulators with different topological invariants. This may provide an alternative explanation to the recent results on one-dimensional interacting topological insulators.

  • Figure
  • Figure
  • Received 11 November 2010

DOI:https://doi.org/10.1103/PhysRevB.83.085426

©2011 American Physical Society

Authors & Affiliations

V. Gurarie

  • Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 8 — 15 February 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×