Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides

Weicheng Lv, Frank Krüger, and Philip Phillips
Phys. Rev. B 82, 045125 – Published 28 July 2010

Abstract

The magnetic excitations of the iron pnictides are explained within a degenerate double-exchange model. The local-moment spins are coupled by superexchanges J1 and J2 between nearest and next-nearest neighbors, respectively, and interact with the itinerant electrons of the degenerate dxz and dyz orbitals via a ferromagnetic Hund exchange. The latter stabilizes (π,0) stripe antiferromagnetism due to emergent ferro-orbital order and the resulting kinetic-energy gain by hopping preferably along the ferromagnetic spin direction. Taking the quantum nature of the spins into account, we calculate the magnetic excitation spectra in the presence of both, superexchange and double exchange. A dramatic increase in the spin-wave energies at the competing Néel ordering wave vector is found, in agreement with recent neutron-scattering data. The spectra are fitted to a spin-only model with a strong spatial anisotropy and additional longer-ranged couplings along the ferromagnetic chains. Over a realistic parameter range, the effective couplings along the chains are negative corresponding to unfrustrated stripe antiferromagnetism.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 February 2010

DOI:https://doi.org/10.1103/PhysRevB.82.045125

©2010 American Physical Society

Authors & Affiliations

Weicheng Lv, Frank Krüger, and Philip Phillips

  • Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 82, Iss. 4 — 15 July 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×