Electron-vibron coupling in suspended carbon nanotube quantum dots

Eros Mariani and Felix von Oppen
Phys. Rev. B 80, 155411 – Published 2 October 2009

Abstract

Motivated by recent experiments, we investigate the electron-vibron coupling in suspended carbon nanotube quantum dots, starting with the electron-phonon coupling of the underlying graphene layer. We show that the coupling strength depends sensitively on the type of vibron and is strongly sample dependent. The coupling strength becomes particularly strong when inhomogeneity-induced electronic quantum dots are located near regions where the vibronic mode is associated with large strain. Specifically, we find that the longitudinal stretching mode and the radial breathing mode are coupled via the strong deformation potential, while twist modes couple more weakly via a mechanism involving modulation of the electronic hopping amplitudes between carbon sites. A special case are bending modes: for symmetry reasons, their coupling is only quadratic in the vibron coordinate. Our results can explain recent experiments on suspended carbon nanotube quantum dots, which exhibit vibrational sidebands accompanied by the Franck-Condon blockade with strong electron-vibron coupling.

  • Figure
  • Figure
  • Figure
  • Received 5 June 2009

DOI:https://doi.org/10.1103/PhysRevB.80.155411

©2009 American Physical Society

Authors & Affiliations

Eros Mariani and Felix von Oppen

  • Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 15 — 15 October 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×