• Featured in Physics
  • Editors' Suggestion

Termination of typical wave-function multifractal spectra at the Anderson metal-insulator transition: Field theory description using the functional renormalization group

Matthew S. Foster, Shinsei Ryu, and Andreas W. W. Ludwig
Phys. Rev. B 80, 075101 – Published 3 August 2009
Physics logo See Viewpoint: Atypical is normal at the metal-insulator transition

Abstract

We revisit the problem of wave-function statistics at the Anderson metal-insulator transition (MIT) of noninteracting electrons in d>2 spatial dimensions. At the transition, the complex spatial structure of the critical wave functions is reflected in the nonlinear behavior of the multifractal spectrum of generalized inverse participation ratios (IPRs). Beyond the crossover from narrow to broad IPR statistics, which always occurs for sufficiently large moments of the wave-function amplitude, the spectrum obtained from a typical wave function associated with a particular disorder realization differs markedly from that obtained from the disorder-averaged IPRs. This phenomenon is known as the termination of the multifractal spectrum. We provide a field theoretical derivation for the termination of the typical multifractal spectrum by combining the nonlinear sigma model framework, conventionally used to access the MIT in d=2+ϵ dimensions, with a functional renormalization-group (FRG) technique. The FRG method deployed here was originally pioneered to study the properties of the two-dimensional (2D) random-phase XY model [D. Carpentier and P. Le Doussal, Nucl. Phys. B 588, 565 (2000)]. The same method was used to demonstrate the termination of the multifractal spectrum in the very special problem of 2D Dirac fermions subject to a random Abelian vector potential. Our result shows that the typical multifractal wave-function spectrum and its termination can be obtained at a generic Anderson localization transition in d>2, within the standard field theoretical framework of the nonlinear sigma model, when combined with the FRG.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 4 February 2009

DOI:https://doi.org/10.1103/PhysRevB.80.075101

©2009 American Physical Society

Viewpoint

Key Image

Atypical is normal at the metal-insulator transition

Published 3 August 2009

Quantum states in disordered solids are characterized by wild spatial fluctuations. As a result, the behavior of a single typical wave function differs markedly from the ensemble average.

See more in Physics

Authors & Affiliations

Matthew S. Foster1,*, Shinsei Ryu2, and Andreas W. W. Ludwig3

  • 1Department of Physics, Columbia University, New York, New York 10027, USA and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
  • 2Department of Physics, University of California, Berkeley, California 94720, USA
  • 3Department of Physics, University of California, Santa Barbara, California 93106, USA

  • *psiborf@rci.rutgers.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 7 — 15 August 2009

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×