Dynamics of a vortex domain wall in a magnetic nanostrip: Application of the collective-coordinate approach

D. J. Clarke, O. A. Tretiakov, G.-W. Chern, Ya. B. Bazaliy, and O. Tchernyshyov
Phys. Rev. B 78, 134412 – Published 14 October 2008

Abstract

The motion of a vortex domain wall in a ferromagnetic strip of submicron width under the influence of an external magnetic field exhibits three distinct dynamical regimes. In a viscous regime at low fields the wall moves rigidly with a velocity proportional to the field. Above a critical field the viscous motion breaks down, giving way to oscillations accompanied by a slow drift of the wall. At still higher fields the drift velocity starts rising with the field again but with a much lower mobility dv/dH than in the viscous regime. To describe the dynamics of the wall, we use the method of collective coordinates that focuses on soft modes of the system. By retaining two soft modes, parametrized by the coordinates of the vortex core, we obtain a simple description of the wall dynamics at low and intermediate applied fields that applies to both the viscous and oscillatory regimes below and above the breakdown. The calculated dynamics agrees well with micromagnetic simulations at low and intermediate values of the driving field. In higher fields, additional modes become soft and the two-mode approximation is no longer sufficient. We explain some of the significant features of vortex-domain-wall motion in high fields through the inclusion of additional modes associated with the half antivortices on the strip edge.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 23 June 2008

DOI:https://doi.org/10.1103/PhysRevB.78.134412

©2008 American Physical Society

Authors & Affiliations

D. J. Clarke1, O. A. Tretiakov1,2, G.-W. Chern1, Ya. B. Bazaliy3,4, and O. Tchernyshyov1

  • 1Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 2Department of Physics, New York University, New York, New York 10003, USA
  • 3Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
  • 4Institute of Magnetism, National Academy of Science of Ukraine, Kyiv 03142, Ukraine

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 78, Iss. 13 — 1 October 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×