Gapless bosonic excitation without symmetry breaking: An algebraic spin liquid with soft gravitons

Cenke Xu
Phys. Rev. B 74, 224433 – Published 27 December 2006

Abstract

A quantum ground state of matter is realized in a bosonic model on a three-dimensional fcc lattice with emergent low energy excitations. The phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft ωk2 dispersion relation. There are three branches of gapless excitations in this phase, one of which is gapless scalar trace mode, the other two have the same polarization and gauge symmetries as the gravitons. The dynamics of this phase is described by a set of Maxwell’s equations. The defects carrying gauge charges can drive the system into the superfluid order when the defects are condensed; also the topological defects are coupled to the dual gauge field in the same manner as the charge defects couple to the original gauge field, after the condensation of the topological defects, the system is driven into the Mott insulator phase. In the two-dimensional case, the gapless soft graviton as well as the algebraic liquid phase are destroyed by the vertex operators in the dual theory, and the stripe order is most likely to take place close to the two-dimensional quantum critical point at which the vertex operators are tuned to zero.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 3 October 2006

DOI:https://doi.org/10.1103/PhysRevB.74.224433

©2006 American Physical Society

Authors & Affiliations

Cenke Xu

  • Department of Physics, University of California, Berkeley, California 94720, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 22 — 1 December 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×