Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study

G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller
Phys. Rev. B 73, 125427 – Published 24 March 2006

Abstract

The atomic arrangement in sp2-dominated carbon (C) and carbon nitride (CNx) thin films has been studied by Raman spectroscopy as a function of substrate temperature and, in the case of CNx, different N incorporation routes (growth methods). In this way, materials composing graphitelike, fullerenelike (FL), and paracyanogenlike structures have been compared. The results show that each type of arrangement results in a characteristic set of the Raman spectra parameters, which describe the degree of aromatic clustering, bond length, and angle distortion and order in sixfold structures. In the case of C films, the atomic structure evolves with substrate temperature from a disordered network to nanocrystalline planar graphitic configurations, with a progressive promotion in size and ordering of sixfold ring clusters. Nitrogen incorporation favors the promotion of sixfold rings in highly disordered networks produced at low temperatures, but precludes the formation of extended graphiticlike clusters at elevated substrate temperatures (>700K). In the latter case, N introduces a high degree of disorder in sixfold ring clusters and enhances the formation of a FL microstructure. The formation and growth of aromatic clusters are discussed in terms of substrate temperature, N incorporation, growth rate, film-forming sources, and concurrent bombardment by hyperthermal particles during growth.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 October 2005

DOI:https://doi.org/10.1103/PhysRevB.73.125427

©2006 American Physical Society

Authors & Affiliations

G. Abrasonis*

  • Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, PF-510119, 01314 Dresden, Germany

R. Gago

  • Centro de Micro-Análisis de Materiales y Departamento de Física Aplicada, Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain

M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller

  • Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, PF-510119, 01314 Dresden, Germany

  • *Electronic address: g.abrasonis@fz-rossendorf.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 12 — 15 March 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×