Full counting statistics of charge transfer in Coulomb blockade systems

D. A. Bagrets and Yu. V. Nazarov
Phys. Rev. B 67, 085316 – Published 27 February 2003
PDFExport Citation

Abstract

Full counting statistics (FCS) of charge transfer in mesoscopic systems has recently become a subject of significant interest, since it proves to reveal an important information about the system which can be hardly assessed by other means. While the previous research mostly addressed the FCS of noninteracting systems, the present paper deals with the FCS in the limit of strong interaction. In this Coulomb blockade limit the electron dynamics is known to be governed by a master equation. We develop a general scheme to evaluate the FCS in such case, this being the main result of the work presented. We illustrate the scheme, by applying it to concrete systems. For generic case of a single resonant level we establish the equivalence of scattering and master equation approach to FCS. Further we study a single Coulomb blockade island with two and three leads attached and compare the FCS in this case with our recent results concerning an open dot either with two and three terminals. We demonstrate that Coulomb interaction suppresses the relative probabilities of large current fluctuations.

  • Received 31 July 2002

DOI:https://doi.org/10.1103/PhysRevB.67.085316

©2003 American Physical Society

Authors & Affiliations

D. A. Bagrets and Yu. V. Nazarov

  • Department of Applied Physics and Delft Institute of Microelectronics and Submicrontechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 8 — 15 February 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×