Epitaxial growth of Si1yCy alloys characterized as self-organized, ordered, nanometer-sized C-rich aggregates in monocrystalline Si

L. Simon, L. Kubler, J. L. Bischoff, D. Bolmont, J. Fauré, A. Claverie, and J. L. Balladore
Phys. Rev. B 54, 10559 – Published 15 October 1996
PDFExport Citation

Abstract

Molecular-beam epitaxy deposition at 600 °C of Si in the presence of a C precursor (C2H4) allows us to identify, in specific kinetic conditions, a particular C accommodation mode in Si. By cross-sectional transmission electron microscopy we observe a precipitation of nanometric, highly supersaturated C-rich aggregates (1–3 nm) excluding silicon carbide or graphite formation. More surprisingly, these zero-dimensional aggregates are all self-organized in two-dimensional layers, parallel to the growth surface, and reveal a periodicity of about 9 nm, like in a ‘‘natural’’ superlattice. This indicates the occurrence of a cyclic, growth-induced carbon precipitation into a defect-free epitaxied Si matrix, forming a heterogeneous Si1yCy alloy, in spite of constant C and Si supplies all along the growth. The kinetic conditions governing this particular self-organization are specified in terms of Si and C impinging rates at the growth surface. Moreover, by x-ray photoelectron diffraction on the C 1s core level, we demonstrate that a local ordering, corresponding to that in the surrounding Si matrix, exists between the carbon atoms and their first Si neighbors inside the aggregates. This result provides major arguments in favor of the existence of the SinC phases recently predicted by ab initio calculations even if the observation of structured electron, forward-scattering events for next-nearest neighbors is hindered by probable distortions around the C atoms due to high local strain. Finally, the periodic C precipitation is explained on the basis of recently developed concepts of surface related C-solubility enhancements and sequential burying in C-enriched SinC phases of the accumulated C-rich surface layers. Such phases could prove more stable than diluted carbon when forced to match silicon. © 1996 The American Physical Society.

  • Received 13 March 1996

DOI:https://doi.org/10.1103/PhysRevB.54.10559

©1996 American Physical Society

Authors & Affiliations

L. Simon

  • Laboratoire de Physique et de Spectroscopie Electronique, URA CNRS 1435, Faculté des Sciences, Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse Cedex, France
  • Laboratoire de Physique et Applications de Semi-conducteurs, UPR-CNRS 292, 23 rue du Loess, 67037 Strasbourg Cedex 2, France

L. Kubler, J. L. Bischoff, and D. Bolmont

  • Laboratoire de Physique et de Spectroscopie Electronique, URA CNRS 1435, Faculté des Sciences, Université de Haute Alsace, 4 rue des Frères Lumière, 68093 Mulhouse Cedex, France

J. Fauré

  • Laboratoire de Microscopie Electronique, Groupe de Recherche Surfaces et Matériaux, Université de Reims-Champagne-Ardennes, 21 rue Clément Ader, 51685 Reims Cedex 2, France

A. Claverie

  • Centre d'Elaboration des Materiaux et d'Etudes Structurales, CNRS, Boîte Postale 4347, 31055 Toulouse, France

J. L. Balladore

  • Laboratoire de Physique et Applications de Semi-conducteurs, UPR-CNRS 292, 23 rue du Loess, 67037 Strasbourg Cedex 2, France

References (Subscription Required)

Click to Expand
Issue

Vol. 54, Iss. 15 — 15 October 1996

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×