• Milestone

Projector augmented-wave method

P. E. Blöchl
Phys. Rev. B 50, 17953 – Published 15 December 1994
An article within the collection: Physical Review B 50th Anniversary Milestones
PDFExport Citation

Abstract

An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

  • Received 22 August 1994

DOI:https://doi.org/10.1103/PhysRevB.50.17953

©1994 American Physical Society

Collections

This article appears in the following collection:

Physical Review B 50th Anniversary Milestones

These Milestone studies represent lasting contributions to physics by way of reporting significant discoveries, initiating new areas of research, or substantially enhancing the conceptual tools for making progress in the burgeoning field of condensed matter physics.

Authors & Affiliations

P. E. Blöchl

  • IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

References (Subscription Required)

Click to Expand
Issue

Vol. 50, Iss. 24 — 15 December 1994

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×