Ground- and excited-state properties of LiF in the local-density formalism

Alex Zunger and A. J. Freeman
Phys. Rev. B 16, 2901 – Published 15 September 1977
PDFExport Citation

Abstract

The band structure, charge density, x-ray scattering factor (and their behavior under pressure), equilibrium lattice constant, and cohesive energy of the prototype ionic solid LiF were determined using our recently developed self-consistent numerical basis set (non-muffin-tin) linear-combination-of-atomic-orbitals method, within the local-density formalism (LDF). The details of the bonding and the effects of exchange and correlation on the electronic structure are discussed with reference to the conventional picture of ionic bonding. Remarkably good agreement is found with the observed data for the ground-state properties of the system. Contrary to the results of previous band studies, the conventional band-structure approach to excitation energies (i.e., identifying them with the band eigenvalue differences) is found to fail completely in accounting for the observed data in the entire x-ray and optical spectral region when fully self-consistent solutions of the LDF one-particle equation with no further approximation to the crystal potential are obtained. It is found that in the presence of some spatial localization of the initial or final crystal states, the spurious self-interaction terms, as well as the polarization and orbital relaxation self-energy effects are of a similar order of magnitude as the Koopmans'-like interband terms. In order to treat these effects within the LDF self-consistently, we describe the excitation processes as transitions involving point-defect-like states in the solid calculated by a supercell method in which the excitation energies are determined as total-energy differences between (separately calculated) excited- and ground-state configurations. The excited state is represented as a superlattice of locally excited sites using large (8-and 16-atom) unit cells, each containing a single excited site. We find, in the self-consistency limit, that a small but finite degree of spatial localization of the excited states exists even for valence excitations, inducing thereby self-interaction as well as self-energy relaxation and polarization effects. The LDF model is found to account very well for both interband and exciton transitions over the entire spectral region (12-695 eV) and to yield definite predictions regarding the exciton bandwidths and series limits.

  • Received 2 May 1977

DOI:https://doi.org/10.1103/PhysRevB.16.2901

©1977 American Physical Society

Authors & Affiliations

Alex Zunger

  • Department of Physics and Astronomy, and the Materials Research Center, Northwestern University, Evanston, Illinois 60201

A. J. Freeman

  • Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201
  • Argonne National Laboratory, Argonne, Illinois 60439

References (Subscription Required)

Click to Expand
Issue

Vol. 16, Iss. 6 — 15 September 1977

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×