ϕ4 lattice model with cubic symmetry in three dimensions: Renormalization group flow and first-order phase transitions

Martin Hasenbusch
Phys. Rev. B 109, 054420 – Published 15 February 2024

Abstract

We study the three-component ϕ4 model on the simple cubic lattice in the presence of a cubic perturbation. To this end, we perform Monte Carlo simulations in conjunction with a finite-size scaling analysis of the data. The analysis of the renormalization group (RG) flow of a dimensionless quantity provides us with the accurate estimate Y4ω2=0.00081(7) for the difference of the RG eigenvalue Y4 at the O(3)-symmetric fixed point and the correction exponent ω2 at the cubic fixed point. We determine an effective exponent νeff of the correlation length that depends on the strength of the breaking of the O(3) symmetry. Field theory predicts that depending on the sign of the cubic perturbation, the RG flow is attracted by the cubic fixed point, or runs to an ever increasing amplitude, indicating a fluctuation-induced first-order phase transition. We demonstrate directly the first-order nature of the phase transition for a sufficiently strong breaking of the O(3) symmetry. We obtain accurate results for the latent heat, the correlation length in the disordered phase at the transition temperature, and the interface tension for interfaces between one of the ordered phases and the disordered phase. We study how these quantities scale with the RG flow, allowing quantitative predictions for weaker breaking of the O(3) symmetry.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 August 2023
  • Revised 23 January 2024
  • Accepted 23 January 2024

DOI:https://doi.org/10.1103/PhysRevB.109.054420

©2024 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Martin Hasenbusch

  • Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 5 — 15 February 2024

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×