• Editors' Suggestion
  • Letter

Strongly anisotropic spin and orbital Rashba effect at a tellurium – noble metal interface

B. Geldiyev, M. Ünzelmann, P. Eck, T. Kißlinger, J. Schusser, T. Figgemeier, P. Kagerer, N. Tezak, M. Krivenkov, A. Varykhalov, A. Fedorov, L. Nicolaï, J. Minár, K. Miyamoto, T. Okuda, K. Shimada, D. Di Sante, G. Sangiovanni, L. Hammer, M. A. Schneider, H. Bentmann, and F. Reinert
Phys. Rev. B 108, L121107 – Published 14 September 2023

Abstract

We study the interplay of lattice, spin, and orbital degrees of freedom in a two-dimensional model system: a flat square lattice of Te atoms on a Au(100) surface. The atomic structure of the Te monolayer is determined by scanning tunneling microscopy and quantitative low-energy electron diffraction. Using spin- and angle-resolved photoelectron spectroscopy and density functional theory, we observe a Te-Au interface state with highly anisotropic Rashba-type spin-orbit splitting at the X¯ point of the Brillouin zone. Based on a profound symmetry and tight-binding analysis, we show how in-plane square lattice symmetry and broken inversion symmetry at the Te-Au interface together enforce a remarkably anisotropic orbital Rashba effect which strongly modulates the spin splitting.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 March 2023
  • Revised 25 July 2023
  • Accepted 14 August 2023

DOI:https://doi.org/10.1103/PhysRevB.108.L121107

©2023 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

B. Geldiyev1, M. Ünzelmann1,*, P. Eck2, T. Kißlinger3, J. Schusser1, T. Figgemeier1, P. Kagerer1, N. Tezak1, M. Krivenkov4, A. Varykhalov4, A. Fedorov4,5,6, L. Nicolaï7, J. Minár7, K. Miyamoto8, T. Okuda8, K. Shimada8, D. Di Sante9, G. Sangiovanni2, L. Hammer3, M. A. Schneider3, H. Bentmann1,†, and F. Reinert1

  • 1Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 2Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 3Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
  • 4Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
  • 5Leibniz Institute for Solid State and Materials Research, IFW Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtzstraße 20, D-01069 Dresden, Germany
  • 6Joint Laboratory “Functional Quantum Materials” at BESSY II, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
  • 7New Technologies - Research Center, University of West Bohemia, CZ-30100 Pilsen, Czech Republic
  • 8Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
  • 9Department of Physics and Astronomy, University of Bologna, I-40127 Bologna, Italy

  • *muenzelmann@physik.uni-wuerzburg.de
  • Present address: Center for Quantum Spintronics (QuSpin), NTNU Trondheim, NO-7034 Trondheim, Norway.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 108, Iss. 12 — 15 September 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×