Powerful method to evaluate the mass gaps of free-particle quantum critical systems

Francisco C. Alcaraz, José A. Hoyos, and Rodrigo A. Pimenta
Phys. Rev. B 104, 174206 – Published 19 November 2021

Abstract

We present a numerical method for the evaluation of the mass gap and the low-lying energy gaps of a large family of free-fermionic and free-parafermionic quantum chains. The method is suitable for some generalizations of the quantum Ising and XY models with multispin interactions. We illustrate the method by considering the Ising quantum chains with uniform and random coupling constants. The mass gaps of these quantum chains are obtained from the largest root of a characteristic polynomial. We also show that the Laguerre bound, for the largest root of a polynomial, used as an initial guess for the largest root in the method, gives us estimates for the mass gaps sharing the same leading finite-size behavior as the exact results. This opens an interesting possibility of obtaining precise critical properties very efficiently, which we explore by studying the critical point and the paramagnetic Griffiths phase of the quantum Ising chain with random couplings. In this last phase, we obtain the effective dynamical critical exponent as a function of the distance to criticality. Finally, we compare the mass gap estimates derived from the Laguerre bound and the strong-disorder renormalization-group method. Both estimates require comparable computational efforts, with the former having the advantage of being more accurate and also being applicable away from infinite-randomness fixed points. We believe this method is a relevant tool for tackling critical quantum chains with and without quenched disorder.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 13 September 2021
  • Revised 21 October 2021
  • Accepted 11 November 2021

DOI:https://doi.org/10.1103/PhysRevB.104.174206

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsStatistical Physics & Thermodynamics

Authors & Affiliations

Francisco C. Alcaraz1,*, José A. Hoyos1,†, and Rodrigo A. Pimenta1,2,‡

  • 1Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil
  • 2Departamento de Física, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, MG, Brazil

  • *alcaraz@ifsc.usp.br
  • hoyos@ifsc.usp.br
  • pimenta@ifsc.usp.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 17 — 1 November 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×