Barocaloric properties of quaternary Mn3(Zn,In)N for room-temperature refrigeration applications

David Boldrin, Eduardo Mendive-Tapia, Jan Zemen, Julie B. Staunton, Angelo M. Gomes, Luis Ghivelder, John Halpin, Alexandra S. Gibbs, Araceli Aznar, Josep-Lluís Tamarit, Pol Lloveras, Xavier Moya, and Lesley F. Cohen
Phys. Rev. B 104, 134101 – Published 1 October 2021
PDFHTMLExport Citation

Abstract

The magnetically frustrated manganese nitride antiperovskite family displays significant changes of entropy under hydrostatic pressure that can be useful for the emerging field of barocaloric cooling. Here we show that barocaloric properties of metallic antiperovskite Mn nitrides can be tailored for room-temperature application through quaternary alloying. We find an enhanced entropy change of |ΔSt|=37JK1kg1 at the Tt=300K antiferromagnetic transition of quaternary Mn3Zn0.5In0.5N relative to the ternary end members. The pressure-driven barocaloric entropy change of Mn3Zn0.5In0.5N reaches |ΔSBCE|=20JK1kg1 in 2.9 kbar. Our results open up a large phase space where compounds with improved barocaloric properties may be found.

  • Figure
  • Figure
  • Figure
  • Received 19 May 2021
  • Accepted 1 September 2021

DOI:https://doi.org/10.1103/PhysRevB.104.134101

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

David Boldrin1,2,*, Eduardo Mendive-Tapia3,4, Jan Zemen5, Julie B. Staunton4, Angelo M. Gomes6, Luis Ghivelder6, John Halpin2, Alexandra S. Gibbs7, Araceli Aznar8, Josep-Lluís Tamarit8, Pol Lloveras8, Xavier Moya9, and Lesley F. Cohen1

  • 1Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
  • 2SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
  • 3Department for Computational Materials Design, Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany
  • 4Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
  • 5Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 166 27, Czech Republic
  • 6Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
  • 7ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
  • 8Departament de Física, EEBE, Campus Diagonal-Besòs and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Catalonia, Spain
  • 9Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, United Kingdom

  • *Corrsponding author: david.boldrin@glasgow.ac.uk

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 13 — 1 October 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×