Fourier modal method for moiré lattices

Natalia S. Salakhova, Ilia M. Fradkin, Sergey A. Dyakov, and Nikolay A. Gippius
Phys. Rev. B 104, 085424 – Published 23 August 2021

Abstract

In recent years twisted bilayers of two-dimensional (2D) materials have become very popular in the field due to the possibility to totally change their electronic properties by simple rotation. At the same time, in the wide field of photonic crystals, this idea still remains almost untouched, and only some particular problems have been considered. One of the reasons is the computational difficulty of accurate consideration of moiré superlattices that appear due to the superimposition of misaligned lattices. Indeed, the unit cell of the complex lattice is typically much larger than the original crystals and requires many more computational resources for the computations. Here, we propose a moiré-adapted Fourier modal method (MA-FMM) in the form of scattering matrices for the description of twisted one-dimensional (1D) gratings' stacks. We demonstrate that MA-FMM allows us to consider sublattices in close vicinity to each other and account for their interaction via the near field. In the developed numerical scheme, we utilize the fact that each sublattice is only 1D periodic and therefore simpler than the resulting 2D superlattice, as well as the fact that even a small gap between the lattices filters out high Fourier harmonics due to their evanescent origin. Such approach accelerates the computations from 1 up to 3 or more orders of magnitude for typical structures depending on the number of harmonics. In turn, the high computational speed paves the way for rigorous study of almost any photonic crystals of the proposed geometry and demonstration of specific moiré-associated effects.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 June 2021
  • Revised 3 August 2021
  • Accepted 5 August 2021

DOI:https://doi.org/10.1103/PhysRevB.104.085424

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsGeneral PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Natalia S. Salakhova and Ilia M. Fradkin*

  • Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia and Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Moscow Region 141701, Russia

Sergey A. Dyakov and Nikolay A. Gippius

  • Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia

  • *Ilia.Fradkin@skoltech.ru

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 8 — 15 August 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×