Inside the electronic structure of the Sm3Fe5O12 garnet: A mixed ab initio and experimental study

M. U. González-Rivas, M. A. Ortiz-Medrano, G. Herrera-Pérez, G. G. Carbajal-Arízaga, R. Flores-Moreno, L. Fuentes-Cobas, M. E. Fuentes-Montero, and M. García-Guaderrama
Phys. Rev. B 104, 035151 – Published 26 July 2021
PDFHTMLExport Citation

Abstract

A combination of density functional theory (DFT) with experimental methods was used to study the electronic and crystal structure of Sm3Fe5O12 (SmIG), which was synthesized using a modified sol-gel method. Computational studies were performed within the generalized gradient approximation (GGA), with and without the Hubbard-U correction (DFT+U), to analyze the influence of the on-site repulsion on the band structure and the density of states (DOS) of SmIG, as well as the structural parameters. The calculations were contrasted with experimental results from x-ray diffraction (XRD) and UV-Vis spectra. A Rietveld refinement returned a lattice parameter of 12.5231(3) Å. Synthesis methods seem to have a substantial effect in the band gap of SmIG, as our experimental value of 2.26–2.27 eV differs from the 2.02 eV value previously reported for samples prepared using the traditional solid-state method, despite similar lattice parameters. The DFT-calculated lattice parameters were within 1% of the experimental value. Analytically calculated effective Hubbard-U values were 4.3092 eV for tetrahedral iron, and 6.0926 eV for octahedral iron. A model is proposed to calculate the band gap in Sm3Fe5O12, taking into account the structure's ferrimagnetism and energy level distribution. A direct transition between minority spin states was found, resulting in a calculated band gap of 2.27 eV, close to the aforementioned value from sol-gel synthesis.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 5 October 2020
  • Revised 5 February 2021
  • Accepted 6 July 2021

DOI:https://doi.org/10.1103/PhysRevB.104.035151

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. U. González-Rivas1,*, M. A. Ortiz-Medrano1, G. Herrera-Pérez2, G. G. Carbajal-Arízaga3, R. Flores-Moreno3, L. Fuentes-Cobas4, M. E. Fuentes-Montero5,†, and M. García-Guaderrama1,‡

  • 1Laboratorio de Materiales y Sistemas Fotosensibles, Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. José Guadalupe Zuno 48, Industrial los Belenes, C.P. 45157, Zapopan, Jalisco, México
  • 2Catedrático CONACyT assigned to Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, C.P. 31136, Chihuahua, Chihuahua, México
  • 3Departamento de Química, Universidad de Guadalajara, Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco, México
  • 4Centro de Investigación en Materiales Avanzados, S.C., Ave. Miguel de Cervantes 120, Complejo Industrial, C.P. 31136, Chihuahua, Chihuahua, México
  • 5Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n campus II, C.P. 31125, Chihuahua, Chihuahua, México

  • *Present address: Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; mug3095@student.ubc.ca; mulises.gonzalez@alumnos.udg.mx
  • Corresponding author: mfuentes@uach.mx
  • Corresponding author: marco.garcia@academico.udg.mx

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 3 — 15 July 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×