Ubiquitous suppression of the nodal coherent spectral weight in Bi-based cuprates

M. Zonno, F. Boschini, E. Razzoli, S. K. Y. Dufresne, M. Michiardi, M. X. Na, T. M. Pedersen, S. Gorovikov, S. Gonzalez, G. Di Santo, L. Petaccia, M. Schneider, D. Wong, P. Dosanjh, Y. Yoshida, H. Eisaki, R. D. Zhong, J. A. Schneeloch, G. D. Gu, A. K. Mills, S. Zhdanovich, G. Levy, D. J. Jones, and A. Damascelli
Phys. Rev. B 103, 155109 – Published 7 April 2021

Abstract

High-temperature superconducting cuprates exhibit an intriguing phenomenology for the low-energy elementary excitations. In particular, an unconventional temperature dependence of the coherent spectral weight (CSW) has been observed in the superconducting phase by angle-resolved photoemission spectroscopy (ARPES), both at the antinode where the d-wave paring gap is maximum, as well as along the gapless nodal direction. Here, we combine equilibrium and time-resolved ARPES to track the temperature-dependent meltdown of the nodal CSW in Bi-based cuprates with unprecedented sensitivity. We find the nodal suppression of CSW upon increasing temperature to be ubiquitous across single- and bi-layer Bi cuprates, and uncorrelated to superconducting and pseudogap onset temperatures. We quantitatively model both the lineshape of the nodal spectral features and the anomalous suppression of CSW within the Fermi-liquid framework, establishing the key role played by the normal state electrodynamics in the description of nodal quasiparticles in superconducting cuprates.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 September 2020
  • Revised 9 March 2021
  • Accepted 11 March 2021

DOI:https://doi.org/10.1103/PhysRevB.103.155109

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Zonno1,2,*, F. Boschini1,2,†, E. Razzoli1,2,3, S. K. Y. Dufresne1,2, M. Michiardi1,2,4, M. X. Na1,2, T. M. Pedersen5, S. Gorovikov5, S. Gonzalez6, G. Di Santo6, L. Petaccia6, M. Schneider1, D. Wong1, P. Dosanjh1, Y. Yoshida7, H. Eisaki7, R. D. Zhong8, J. A. Schneeloch8, G. D. Gu8, A. K. Mills1,2, S. Zhdanovich1,2, G. Levy1,2, D. J. Jones1,2, and A. Damascelli1,2,‡

  • 1Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
  • 2Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1
  • 3SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
  • 4Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, Dresden 01187, Germany
  • 5Canadian Light Source, Inc.44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada, S7N 2V3
  • 6Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
  • 7National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
  • 8Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

  • *mzonno@phas.ubc.ca
  • Present address: Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada.
  • damascelli@physics.ubc.ca

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 15 — 15 April 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×