Ultrafast formation of domain walls of a charge density wave in SmTe3

M. Trigo, P. Giraldo-Gallo, J. N. Clark, M. E. Kozina, T. Henighan, M. P. Jiang, M. Chollet, I. R. Fisher, J. M. Glownia, T. Katayama, P. S. Kirchmann, D. Leuenberger, H. Liu, D. A. Reis, Z. X. Shen, and D. Zhu
Phys. Rev. B 103, 054109 – Published 15 February 2021
PDFHTMLExport Citation

Abstract

We study ultrafast x-ray diffraction on the charge density wave (CDW) of SmTe3 using an x-ray free-electron laser. The high momentum and time resolution afforded by the x-ray laser enabled capturing fine wave-vector and time-dependent features of the CDW that originate from fast (in time) and sharp (in real space) variations of the CDW lattice distortion, which we attribute to an inversion of the order parameter. These domain inversions occur near the surface and are caused by the short penetration depth of the near-infrared pump with the wavelength centered at 800 nm, resulting in CDW domain walls perpendicular to the sample surface. These domain walls break the CDW long-range order on the scale of the x-ray probe depth, controlled experimentally by the x-ray incidence angle and suppress the diffraction intensity of the CDW for times much longer than the 1ps recovery of the electronic gap observed in time and angle-resolved photoemission spectroscopy. We model the spatial and temporal dependences of the order parameter using a simple Ginzburg-Landau model with all the parameters obtained from the published literature. We find reasonable agreement between the calculated and the measured diffraction across the momentum, time, fluence, and incidence angle dependence without adjusting any parameters. We reconstruct the spatial and temporal dependences of the lattice order parameter and find that at long times, depending on the pump fluence, multiple domain walls remain at distances of a few nanometers from the surface.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 June 2020
  • Revised 14 January 2021
  • Accepted 21 January 2021

DOI:https://doi.org/10.1103/PhysRevB.103.054109

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Trigo1,2,*, P. Giraldo-Gallo3,4, J. N. Clark1, M. E. Kozina1,2,3, T. Henighan1,2,5, M. P. Jiang1,2,5, M. Chollet6, I. R. Fisher2,3, J. M. Glownia6, T. Katayama7, P. S. Kirchmann2, D. Leuenberger2,3, H. Liu1,5, D. A. Reis1,2,3, Z. X. Shen2,3, and D. Zhu6

  • 1Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 3Department of Applied Physics, Stanford University, Stanford, California 94305, USA
  • 4Department of Physics, Universidad de Los Andes, Bogotá 111711, Colombia
  • 5Department of Physics, Stanford University, Stanford, California 94305, USA
  • 6Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 7Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

  • *Corresponding author: mtrigo@slac.stanford.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 5 — 1 February 2021

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×