Magnetoelastic distortion of multiferroic BiFeO3 in the canted antiferromagnetic state

T. Rõõm, J. Viirok, L. Peedu, U. Nagel, D. G. Farkas, D. Szaller, V. Kocsis, S. Bordács, I. Kézsmárki, D. L. Kamenskyi, H. Engelkamp, M. Ozerov, D. Smirnov, J. Krzystek, K. Thirunavukkuarasu, Y. Ozaki, Y. Tomioka, T. Ito, T. Datta, and R. S. Fishman
Phys. Rev. B 102, 214410 – Published 9 December 2020
PDFHTMLExport Citation

Abstract

Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO3 in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly antiparallel spins. The revised spin model for BiFeO3 contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.

  • Figure
  • Figure
  • Received 26 September 2020
  • Accepted 18 November 2020

DOI:https://doi.org/10.1103/PhysRevB.102.214410

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

T. Rõõm1,*, J. Viirok1, L. Peedu1, U. Nagel1, D. G. Farkas2,3, D. Szaller2,4, V. Kocsis2,5, S. Bordács2,6, I. Kézsmárki2,7, D. L. Kamenskyi8, H. Engelkamp8, M. Ozerov9, D. Smirnov9, J. Krzystek9, K. Thirunavukkuarasu10, Y. Ozaki11, Y. Tomioka11, T. Ito11, T. Datta12, and R. S. Fishman13,†

  • 1National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
  • 2Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111 Budapest, Hungary
  • 3Condensed Matter Research Group of the Hungarian Academy of Sciences, 1111 Budapest, Hungary
  • 4Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
  • 5RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
  • 6Hungarian Academy of Sciences, Premium Postdoctor Program, 1051 Budapest, Hungary
  • 7Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
  • 8High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525 ED Nijmegen, Netherlands
  • 9National High Magnetic Field Laboratory, Tallahassee, FloridA 32310, USA
  • 10Department of Physics, Florida A&M University, Florida 32307, USA
  • 11National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565 Ibaraki, Japan
  • 12Department of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
  • 13Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

  • *toomas.room@kbfi.ee
  • fishmanrs@ornl.gov

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 21 — 1 December 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×