Thermal transport in compensated semimetals: Effect of electron-electron scattering on Lorenz ratio

Mohammad Zarenia, Alessandro Principi, and Giovanni Vignale
Phys. Rev. B 102, 214304 – Published 18 December 2020

Abstract

It is well known that the electronic thermal conductivity of clean compensated semimetals can be greatly enhanced over the electric conductivity by the availability of an ambipolar mechanism of conduction, whereby electrons and holes flow in the same direction experiencing negligible Coulomb scattering as well as negligible impurity scattering. This enhancement—resulting in a breakdown of the Wiedemann-Franz law with an anomalously large Lorenz ratio—has been recently observed in two-dimensional monolayer and bilayer graphene near the charge neutrality point. In contrast to this, three-dimensional compensated semimetals such as WP2 and Sb are typically found to show a reduced Lorenz ratio. We investigate the reasons for this difference, focusing on the low-temperature regime where the electron-electron scattering is expected to dominate over other scattering mechanisms. We show that the different regimes of Fermi statistics (nondegenerate electron-hole liquid in graphene versus degenerate electron-hole liquid in compensated semimetals) are not sufficient to explain the reduction of the Lorenz ratio in the latter. We propose that the solution of the puzzle lies in the large separation of electron and hole pockets in momentum space, which allows compensated semimetals to sustain sizable regions of electron-hole accumulation near the contacts. These accumulations suppress the ambipolar conduction mechanism and effectively split the system into two independent electron and hole conductors. We present a quantitative theory of the crossover from ambipolar to unipolar conduction as a function of the size of the electron-hole accumulation regions, and show that it naturally leads to a sample-size-dependent thermal conductivity.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 24 August 2020
  • Revised 21 October 2020
  • Accepted 30 November 2020

DOI:https://doi.org/10.1103/PhysRevB.102.214304

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Mohammad Zarenia, Alessandro Principi, and Giovanni Vignale

  • Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA and School of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 21 — 1 December 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×