• Editors' Suggestion

Incipient antiferromagnetism in the Eu-doped topological insulator Bi2Te3

A. Tcakaev, V. B. Zabolotnyy, C. I. Fornari, P. Rüßmann, T. R. F. Peixoto, F. Stier, M. Dettbarn, P. Kagerer, E. Weschke, E. Schierle, P. Bencok, P. H. O. Rappl, E. Abramof, H. Bentmann, E. Goering, F. Reinert, and V. Hinkov
Phys. Rev. B 102, 184401 – Published 2 November 2020

Abstract

Rare-earth ions typically exhibit larger magnetic moments than transition-metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of topological insulators. Yet in a recent photoemission study of Eu-doped Bi2Te3 films, the spectra remained gapless down to T=20 K. Here we scrutinize whether the conditions for a substantial gap formation in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the M4,5 x-ray absorption and magnetic circular dichroism spectra reveals a Eu2+ valence and confirms a large magnetic moment, consistent with a 4f7S7/28 ground state. At temperatures below 10 K, bulk magnetometry indicates the onset of antiferromagnetic (AFM) ordering. This is in good agreement with density functional theory, which predicts AFM interactions between the Eu impurities. Our results support the notion that antiferromagnetism can coexist with topological surface states in rare-earth-doped Bi2Te3 and call for spectroscopic studies in the Kelvin range to look for novel quantum phenomena such as the quantum anomalous Hall effect.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 1 September 2020
  • Revised 6 October 2020
  • Accepted 9 October 2020

DOI:https://doi.org/10.1103/PhysRevB.102.184401

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

A. Tcakaev1, V. B. Zabolotnyy1,*, C. I. Fornari2,3,4, P. Rüßmann5, T. R. F. Peixoto2,3, F. Stier1, M. Dettbarn1, P. Kagerer2,3, E. Weschke6, E. Schierle6, P. Bencok7, P. H. O. Rappl4, E. Abramof4, H. Bentmann2,3, E. Goering8, F. Reinert2,3, and V. Hinkov1,†

  • 1Experimentelle Physik IV and Röntgen Research Center for Complex Materials (RCCM), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 2Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 3Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • 4Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12245-970 São Paulo, Brazil
  • 5Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
  • 6Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
  • 7Diamond Light Source, Didcot OX11 0DE, United Kingdom
  • 8Max-Planck-Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany

  • *Corresponding author: volodymyr.zabolotnyy@physik.uni-wuerzburg.de
  • Corresponding author: hinkov@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 18 — 1 November 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×