Anisotropic vortices on superconducting Nb(110)

Artem Odobesko, Felix Friedrich, Song-Bo Zhang, Soumyajyoti Haldar, Stefan Heinze, Björn Trauzettel, and Matthias Bode
Phys. Rev. B 102, 174502 – Published 6 November 2020
PDFHTMLExport Citation

Abstract

We investigate the electronic properties of type-II superconducting Nb(110) in an external magnetic field. Scanning tunneling spectroscopy reveals a complex vortex shape which develops from circular via coffee bean shaped to elliptical when decreasing the energy from the edge of the superconducting gap to the Fermi level. This anisotropy is traced back to the local density of states of Caroli–de Gennes–Matricon states which exhibits a direction-dependent splitting. Oxidizing the Nb(110) surface triggers the transition from the clean to the dirty limit, attenuates the vortex bound states, and leads to an isotropic appearance of the vortices. Density functional theory shows that the Nb(110) Fermi surface is stadium shaped near the Γ¯ point. Calculations within the Bogoliubov–de Gennes theory using these Fermi contours consistently reproduce the experimental results.

  • Figure
  • Figure
  • Figure
  • Received 11 July 2020
  • Revised 7 September 2020
  • Accepted 12 October 2020

DOI:https://doi.org/10.1103/PhysRevB.102.174502

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Artem Odobesko1,*, Felix Friedrich1, Song-Bo Zhang2, Soumyajyoti Haldar3, Stefan Heinze3, Björn Trauzettel2,4, and Matthias Bode1,4,5

  • 1Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • 2Theoretische Physik IV, Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
  • 3Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
  • 4Würzburg-Dresden Cluster of Excellence ct.qmat, Germany
  • 5Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

  • *Corresponding author: artem.odobesko@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 17 — 1 November 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×