Projective symmetry group classifications of quantum spin liquids on the simple cubic, body centered cubic, and face centered cubic lattices

Jonas Sonnenschein, Aishwarya Chauhan, Yasir Iqbal, and Johannes Reuther
Phys. Rev. B 102, 125140 – Published 22 September 2020

Abstract

We perform extensive classifications of Z2 quantum spin liquids on the simple cubic, body centered cubic, and face centered cubic (fcc) lattices using a spin-rotation-invariant fermionic projective symmetry group approach. Taking into account that all three lattices share the same point group Oh, we apply an efficient gauge where the classification for the simple cubic lattice can be partially carried over to the other two lattices. We identify hundreds of projective representations for each of the three lattices, however, when constructing short-range mean-field models for the fermionic partons (spinons) these phases collapse to only very few relevant cases. We self-consistently calculate the corresponding mean-field parameters for frustrated Heisenberg models on all three lattices with up to third-neighbor spin interactions and discuss the spinon dispersions, ground-state energies, and dynamical spin structure factors. Our results indicate that phases with nonuniform spinon hopping or pairing amplitudes are energetically favored. An unusual situation is identified for the fcc lattice where the spinon dispersion minimizing the mean-field energy features a network of symmetry-protected linelike zero modes in reciprocal space. We further discuss characteristic fingerprints of these phases in the dynamical spin structure factor which may help to identify and distinguish them in future numerical or experimental studies.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 6 July 2020
  • Revised 25 August 2020
  • Accepted 26 August 2020

DOI:https://doi.org/10.1103/PhysRevB.102.125140

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Jonas Sonnenschein1,2,*, Aishwarya Chauhan3,†, Yasir Iqbal3,‡, and Johannes Reuther1,2,§

  • 1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
  • 2Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
  • 3Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

  • *j0nas@zedat.fu-berlin.de
  • ph18d022@smail.iitm.ac.in
  • yiqbal@physics.iitm.ac.in
  • §reuther@zedat.fu-berlin.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 12 — 15 September 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×