4f spin driven ferroelectric-ferromagnetic multiferroicity in PrMn2O5 under a magnetic field

S. Chattopadhyay, V. Balédent, S. K. Panda, Sh. Yamamoto, F. Duc, T. Herrmannsdörfer, M. Uhlarz, T. Gottschall, O. Mathon, Z. Wang, C. Strohm, M. Greenblatt, P. Foury-Leylekian, and J. Wosnitza
Phys. Rev. B 102, 094408 – Published 8 September 2020

Abstract

In contrast to all other members of the RMn2O5 family with nonzero 4f electrons (R = Nd to Lu), PrMn2O5 does not show any spin driven ferroelectricity in the magnetically ordered phase. By means of high-field electric polarization measurements up to 45 T, we have found that this exceptional candidate undergoes a spin driven multiferroic phase under magnetic field. X-ray magnetic circular dichroism studies up to 30 T at the Pr L2 edge show that this ferroelectricity originates from and directly couples to the ferromagnetic component of the Pr3+ spins. Experimental observations along with our generalized gradient-approximation +U calculations reveal that this exotic ferroelectric-ferromagnetic combination stabilizes through the exchange-striction mechanism solely driven by a 3d4f-type coupling, as opposed to the other RMn2O5 members with 3d3d driven ferroelectric-antiferromagnetic-type conventional type-II multiferroicity.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 February 2020
  • Revised 27 May 2020
  • Accepted 16 August 2020

DOI:https://doi.org/10.1103/PhysRevB.102.094408

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. Chattopadhyay1,*, V. Balédent2, S. K. Panda3, Sh. Yamamoto1, F. Duc4, T. Herrmannsdörfer1, M. Uhlarz1, T. Gottschall1, O. Mathon5, Z. Wang6, C. Strohm7, M. Greenblatt8, P. Foury-Leylekian2, and J. Wosnitza1,9

  • 1Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
  • 2Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
  • 3Department of Physics, Bennett University, Greater Noida 201310, Uttar Pradesh, India
  • 4Laboratoire National des Champs Magnétiques Intenses (LNCMI-EMFL), UPR 3228 CNRS, INSA, UGA, UPS, 143 avenue de Rangueil, 31400 Toulouse, France
  • 5European Synchrotron Radiation Facility, Boîte Postale 220, 38043 Grenoble, France
  • 6Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
  • 7Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
  • 8Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
  • 9Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany

  • *s.chattopadhyay@hzdr.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 9 — 1 September 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×