Magnetoresistance in Fe0.8Ga0.2 thin films with magnetic stripes: The role of the three-dimensional magnetic structure

B. Pianciola, S. Flewett, E. De Biasi, C. Hepburn, L. Lounis, M. Vásquez-Mansilla, M. Granada, M. Barturen, M. Eddrief, M. Sacchi, M. Marangolo, and J. Milano
Phys. Rev. B 102, 054438 – Published 26 August 2020

Abstract

In this work we show the existence of closure domains in Fe0.8Ga0.2 thin films featuring a striped magnetic pattern and study the effect of the magnetic domain arrangement on the magnetotransport properties. By means of x-ray resonant magnetic scattering, we experimentally demonstrate the presence of such closure domains and also estimate their sizes and relative contribution to surface magnetization. Magnetotransport experiments show that the behavior of the magnetoresistance depends on the measurement geometry as well as on the temperature. When the electric current flows perpendicular to the stripe direction, the resistivity decreases when a magnetic field is applied along the stripe direction (negative magnetoresistance) in all the studied temperature range. Transport calculations in the Ohmic regime indicate that the main source is the anisotropic magnetoresistance. In the case of current flowing parallel to the stripe domains, the magnetoresistance changes sign, being positive at room temperature and negative at 100 K. An intrinsic magnetoresistant contribution arising from the domain walls appears as the most plausible explanation for the observed behavior. We have put in evidence the importance of using x-ray resonant magnetic scattering for the determination of thin-film properties related with the magnetic structure.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 January 2020
  • Revised 27 April 2020
  • Accepted 7 August 2020

DOI:https://doi.org/10.1103/PhysRevB.102.054438

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

B. Pianciola1, S. Flewett2, E. De Biasi1,3, C. Hepburn4, L. Lounis4, M. Vásquez-Mansilla1, M. Granada1, M. Barturen5, M. Eddrief4,6, M. Sacchi4,6,7, M. Marangolo4,6, and J. Milano1,3,6

  • 1Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Argentina
  • 2Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso, Chile
  • 3Universidad Nacional de Cuyo, Instituto Balseiro, Centro Atómico Bariloche, (R8402AGP) San Carlos de Bariloche, Argentina
  • 4Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, UMR7588, F-75005 Paris, France
  • 5Instituto de Tecnología, Universidad Argentina de la Empresa, Lima 775, (C1073AAO) Ciudad Autónoma de Buenos Aires, Argentina
  • 6LIFAN, Laboratorio Internacional Franco-Argentino en Nanociencias
  • 7Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 102, Iss. 5 — 1 August 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×