Magnetic field frustration of the metal-insulator transition in V2O3

J. Trastoy, A. Camjayi, J. del Valle, Y. Kalcheim, J.-P. Crocombette, D. A. Gilbert, J. A. Borchers, J. E. Villegas, D. Ravelosona, M. J. Rozenberg, and Ivan K. Schuller
Phys. Rev. B 101, 245109 – Published 1 June 2020
PDFHTMLExport Citation

Abstract

Despite decades of efforts, the origin of metal-insulator transitions (MITs) in strongly correlated materials remains one of the main long-standing problems in condensed-matter physics. An archetypal example is V2O3, which undergoes simultaneous electronic, structural, and magnetic phase transitions. This remarkable feature highlights the many degrees of freedom at play in this material. In this work, acting solely on the magnetic degree of freedom, we reveal an anomalous feature in the electronic transport of V2O3: On cooling, the magnetoresistance changes from positive to negative values well above the MIT temperature, and shows divergent behavior at the transition. The effects are attributed to the magnetic field quenching antiferromagnetic fluctuations above the Néel temperature TN, and preventing long-range antiferromagnetic ordering below TN. In both cases, suppressing the antiferromagnetic ordering prevents the opening of the incipient electronic gap. This interpretation is supported by Hubbard model calculations which fully reproduce the experimental behavior. Our study sheds light on this classic problem providing a clear and physical interpretation of the nature of the metal-insulator transition.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 January 2020
  • Revised 8 April 2020
  • Accepted 23 April 2020

DOI:https://doi.org/10.1103/PhysRevB.101.245109

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

J. Trastoy1,2,*, A. Camjayi3, J. del Valle1,†, Y. Kalcheim1, J.-P. Crocombette4, D. A. Gilbert5,6, J. A. Borchers5, J. E. Villegas2, D. Ravelosona7, M. J. Rozenberg1,8, and Ivan K. Schuller1

  • 1Department of Physics and Center for Advance Nanoscience, University of California San Diego, La Jolla, California 92093, USA
  • 2Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris Saclay, 91767 Palaiseau, France
  • 3Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 CABA, Argentina
  • 4CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
  • 5NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
  • 6Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37919, USA
  • 7Center for Nanoscience and Nanotechnology (C2N), UMR 9001, 91120 Palaiseau, France and Spin-Ion Technologies, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
  • 8Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France

  • *jtrastoy@physics.ucsd.edu
  • Current address: Department of Quantum Matter Physics, University of Geneva, Quai Ernest-Ansermet 24, 1205 Geneva, Switzerland.

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 24 — 15 June 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×