• Featured in Physics

Tamper-Indicating Quantum Seal*

Brian P. Williams, Keith A. Britt, and Travis S. Humble
Phys. Rev. Applied 5, 014001 – Published 4 January 2016
Physics logo See Focus story: Burglar Alarm Based on Quantum Mechanics

Abstract

Technical means for identifying when tampering occurs is a critical part of many containment and surveillance technologies. Conventional fiber-optic seals provide methods for monitoring enclosed inventories, but they are vulnerable to spoofing attacks based on classical physics. We address these vulnerabilities with the development of a quantum seal that offers the ability to detect the intercept-resend attack using quantum integrity verification. Our approach represents an application of entanglement to provide guarantees in the authenticity of the seal state by verifying it is transmitted coherently. We implement these ideas using polarization-entangled photon pairs that are verified after passing through a fiber-optic-channel test bed. Using binary-detection theory, we find the probability of detecting inauthentic signals is greater than 0.9999 with a false-alarm chance of 109 for a 10-s sampling interval. In addition, we show how the Hong-Ou-Mandel effect concurrently provides a tight bound on redirection attack, in which tampering modifies the shape of the seal. Our measurements limit the tolerable path-length change to submillimeter disturbances. These tamper-indicating features of the quantum seal offer unprecedented security for unattended monitoring systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 August 2015

DOI:https://doi.org/10.1103/PhysRevApplied.5.014001

© 2016 American Physical Society

  • *The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allows others to do so for U.S. Government purposes.

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Focus

Key Image

Burglar Alarm Based on Quantum Mechanics

Published 4 January 2016

Researchers demonstrated a scheme that relies on quantum mechanics to prevent unauthorized access to restricted objects, such as nuclear materials.

See more in Physics

Authors & Affiliations

Brian P. Williams, Keith A. Britt, and Travis S. Humble

  • Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

  • williamsbp@ornl.gov

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 5, Iss. 1 — January 2016

Subject Areas
Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Applied

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×