• Open Access

Ring-based electron cooler for high energy beam cooling

H. Zhao, J. Kewisch, M. Blaskiewicz, and A. Fedotov
Phys. Rev. Accel. Beams 24, 043501 – Published 5 April 2021

Abstract

An electron-ion collider (EIC) at Brookhaven National Laboratory is being proposed as a new discovery machine for the nuclear physics and quantum chromodynamics. The hadron beam cooling plays an important role in the EIC machine to achieve its physics goals. The most challenging is cooling of protons at the highest energy in the EIC. In this paper, we present a possible design of a ring-based electron cooler for the high energy hadron beam cooling. In the proposed approach, the electrons will cool the hadrons while being cooled themselves by radiation damping in the storage ring. For the design of the cooler using the storage ring approach several aspects become very important, including electron ring optics design, chromaticity correction, calculating the dynamic aperture, radiation damping, quantum excitation, and intrabeam scattering. In addition, such effects as beam-beam scattering due to interaction of electrons with hadrons becomes of special concern, and we develop a generalized approach to it. In this paper, we take all of the above effects into the design, and discuss the beam lifetime and instabilities in the ring. A special feature of our design is an effective use of dispersion in the cooling section, both for the ions and electrons, to redistribute the cooling rate between the longitudinal and horizontal planes. Finally, the cooling performance is simulated for proton beam at the top energy of the EIC. Our conclusion is that such ring-based cooler could be a feasible approach to provide required parameters of hadron beam at the top energy of 275 GeV for the EIC.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 28 December 2020
  • Accepted 15 March 2021

DOI:https://doi.org/10.1103/PhysRevAccelBeams.24.043501

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Authors & Affiliations

H. Zhao*, J. Kewisch, M. Blaskiewicz, and A. Fedotov

  • Brookhaven National Laboratory, Upton, New York 11973, USA

  • *hezhao@bnl.gov
  • jorg@bnl.gov

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 24, Iss. 4 — April 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×