• Open Access

Fast hybrid particle-in-cell technique for pulsed-power accelerators

D. R. Welch, N. Bennett, T. C. Genoni, C. Thoma, and D. V. Rose
Phys. Rev. Accel. Beams 23, 110401 – Published 3 November 2020

Abstract

Hybrid-implicit particle-in-cell (PIC) algorithms permit the simulation of complex problems involving both kinetic and fluid plasma regimes over large spatial and temporal scales. Fluid electrons can be computationally fast where and when fluid assumptions are valid. Additional flexibility is obtained if discrete PIC macroparticles, with velocities advanced by either fluid or kinetic equations, are permitted to dynamically migrate between the two descriptions based on phase space criteria. Ideally, these migrations result in energetic particles treated kinetically and dense thermal plasma particles as a fluid. With an energy-conserving particle advance, resolution of the plasma Debye length is not required for numerical accuracy or stability. For pulsed-power applications, the simulation time step is usually constrained by the electron cyclotron frequency, not the more restrictive plasma frequency. A new implicit technique permits accurate particle orbits even at highly underresolved cyclotron frequencies. Thus, greater temporal and spatial scales can be accurately modeled relative to conventional PIC techniques. In this paper, we describe the hybrid PIC technique and fully electromagnetic, hybrid simulations of plasma evolution and current shunting in an idealized accelerator designed for driving a Z-pinch load. The dynamics of electrode heating, electron transport, and surface contaminant evolution are studied in a series of relativistic hybrid-implicit PIC simulations. These dynamics can lead to the shunting of current before reaching the Z-pinch load, thus degrading load performance. Examining two previously published power flow problems, we compare results from fully kinetic, multifluid, and hybrid kinetic-fluid simulations and discuss the computational performance of these three options. The key thrust of the work is to identify possible computational acceleration, through hybrid methods, required for accelerator understanding and design.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 24 July 2020
  • Accepted 19 October 2020

DOI:https://doi.org/10.1103/PhysRevAccelBeams.23.110401

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Authors & Affiliations

D. R. Welch1, N. Bennett2, T. C. Genoni1, C. Thoma1, and D. V. Rose1

  • 1Voss Scientific, LLC, Albuquerque, New Mexico 87108, USA
  • 2Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 23, Iss. 11 — November 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×