Femtosecond wave-packet revivals in ozone

T. Latka, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G. J. Halász, Á. Vibók, and R. Kienberger
Phys. Rev. A 99, 063405 – Published 10 June 2019
PDFHTMLExport Citation

Abstract

Photodissociation of ozone following absorption of biologically harmful solar ultraviolet radiation is the key mechanism for the life protecting properties of the atmospheric ozone layer. Even though ozone photolysis is described successfully by post-Hartree-Fock theory, it has evaded direct experimental access so far, due to the unavailability of intense ultrashort deep ultraviolet radiation sources. The rapidity of ozone photolysis with predicted values of a few tens of femtoseconds renders both ultrashort pump and probe pulses indispensable to capture this manifestation of ultrafast chemistry. Here, we present the observation of femtosecond time-scale electronic and nuclear dynamics of ozone triggered by ∼10-fs, ∼2-µJ deep ultraviolet pulses and, in contrast to conventional attochemistry experiments, probed by extreme ultraviolet isolated pulses. An electronic wave packet is first created. We follow the splitting of the excited B-state related nuclear wave packet into a path leading to molecular fragmentation and an oscillating path, revolving around the Franck-Condon point with 22-fs wave-packet revival time. Full quantum-mechanical ab initio multiconfigurational time-dependent Hartree simulations support this interpretation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 October 2018

DOI:https://doi.org/10.1103/PhysRevA.99.063405

©2019 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

T. Latka1,2,*, V. Shirvanyan1,2, M. Ossiander1,2, O. Razskazovskaya2,3, A. Guggenmos2,3, M. Jobst1,2, M. Fieß2,3, S. Holzner2,3, A. Sommer1,2,3, M. Schultze2,3, C. Jakubeit2,3, J. Riemensberger1, B. Bernhardt1, W. Helml1,3, F. Gatti4,5, B. Lasorne4, D. Lauvergnat6, P. Decleva7, G. J. Halász8, Á. Vibók9,10, and R. Kienberger1,2,†

  • 1Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
  • 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
  • 3Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
  • 4Institut Charles Gerhardt, CNRS, Université de Montpellier, F-34095 Montpellier, France
  • 5Institut des Sciences Moléculaires d’Orsay (UMR 8214), CNRS, Université Paris-Sud/Paris-Saclay, F-91405 Orsay, France
  • 6Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, F-91405 Orsay, France
  • 7Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
  • 8Department of Information Technology, University of Debrecen, H-4002 Debrecen, PO Box 400, Hungary
  • 9Department of Theoretical Physics, University of Debrecen, H-4002 Debrecen, PO Box 400, Hungary
  • 10ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, H-6720 Szeged, Hungary

  • *tobias.latka@mytum.de
  • reinhard.kienberger@tum.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 6 — June 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×