• Editors' Suggestion
  • Open Access

Transmission of near-resonant light through a dense slab of cold atoms

L. Corman, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon
Phys. Rev. A 96, 053629 – Published 27 November 2017

Abstract

The optical properties of randomly positioned, resonant scatterers is a fundamentally difficult problem to address across a wide range of densities and geometries. We investigate it experimentally using a dense cloud of rubidium atoms probed with near-resonant light. The atoms are confined in a slab geometry with a subwavelength thickness. We probe the optical response of the cloud as its density and hence the strength of the light-induced dipole-dipole interactions are increased. We also describe a theoretical study based on a coupled dipole simulation which is further complemented by a perturbative approach. This model reproduces qualitatively the experimental observation of a saturation of the optical depth, a broadening of the transition, and a blueshift of the resonance.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 30 June 2017
  • Revised 4 October 2017

DOI:https://doi.org/10.1103/PhysRevA.96.053629

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

L. Corman*, J. L. Ville, R. Saint-Jalm, M. Aidelsburger, T. Bienaimé, S. Nascimbène, J. Dalibard, and J. Beugnon

  • Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin-Berthelot, 75005 Paris, France

  • *Also at Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
  • Also at Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstr. 4, 80799 Munich, Germany.
  • beugnon@lkb.ens.fr

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 96, Iss. 5 — November 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×