Coulomb-explosion imaging of concurrent CH2BrI photodissociation dynamics

Michael Burt et al.
Phys. Rev. A 96, 043415 – Published 17 October 2017
PDFHTMLExport Citation

Abstract

The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of CH2Br. Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 June 2017

DOI:https://doi.org/10.1103/PhysRevA.96.043415

©2017 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 4 — October 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×