Compressed quantum metrology for the Ising Hamiltonian

W. L. Boyajian, M. Skotiniotis, W. Dür, and B. Kraus
Phys. Rev. A 94, 062326 – Published 21 December 2016

Abstract

We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O(N2) precision, and derive the explicit circuit that accomplishes the simulation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 August 2016

DOI:https://doi.org/10.1103/PhysRevA.94.062326

©2016 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & TechnologyStatistical Physics & Thermodynamics

Authors & Affiliations

W. L. Boyajian1, M. Skotiniotis2, W. Dür1, and B. Kraus1

  • 1Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
  • 2Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 6 — December 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×