Noise tailoring for scalable quantum computation via randomized compiling

Joel J. Wallman and Joseph Emerson
Phys. Rev. A 94, 052325 – Published 18 November 2016

Abstract

Quantum computers are poised to radically outperform their classical counterparts by manipulating coherent quantum systems. A realistic quantum computer will experience errors due to the environment and imperfect control. When these errors are even partially coherent, they present a major obstacle to performing robust computations. Here, we propose a method for introducing independent random single-qubit gates into the logical circuit in such a way that the effective logical circuit remains unchanged. We prove that this randomization tailors the noise into stochastic Pauli errors, which can dramatically reduce error rates while introducing little or no experimental overhead. Moreover, we prove that our technique is robust to the inevitable variation in errors over the randomizing gates and numerically illustrate the dramatic reductions in worst-case error that are achievable. Given such tailored noise, gates with significantly lower fidelity—comparable to fidelities realized in current experiments—are sufficient to achieve fault-tolerant quantum computation. Furthermore, the worst-case error rate of the tailored noise can be directly and efficiently measured through randomized benchmarking protocols, enabling a rigorous certification of the performance of a quantum computer.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 27 June 2016

DOI:https://doi.org/10.1103/PhysRevA.94.052325

©2016 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalQuantum Information, Science & Technology

Authors & Affiliations

Joel J. Wallman

  • Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Canada

Joseph Emerson

  • Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Canada and Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 5 — November 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×