Disturbance in weak measurements and the difference between quantum and classical weak values

Asger C. Ipsen
Phys. Rev. A 91, 062120 – Published 16 June 2015

Abstract

The role of measurement-induced disturbance in weak measurements is of central importance for the interpretation of the weak value. Uncontrolled disturbance can interfere with the postselection process and make the weak value dependent on the details of the measurement process. Here we develop the concept of a generalized weak measurement for classical and quantum mechanics. The two cases appear remarkably similar, but we point out some important differences. A priori it is not clear what the correct notion of disturbance should be in the context of weak measurements. We consider three different notions and get three different results: (1) For a “strong” definition of disturbance, we find that weak measurements are disturbing. (2) For a weaker definition we find that a general class of weak measurements is nondisturbing, but that one gets weak values which depend on the measurement process. (3) Finally, with respect to an operational definition of the “degree of disturbance,” we find that the AAV weak measurements are the least disturbing, but that the disturbance is always nonzero.

  • Received 12 January 2015

DOI:https://doi.org/10.1103/PhysRevA.91.062120

©2015 American Physical Society

Authors & Affiliations

Asger C. Ipsen*

  • Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

  • *asgercro@nbi.dk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 6 — June 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×