Divalent Rydberg atoms in optical lattices: Intensity landscape and magic trapping

Turker Topcu and Andrei Derevianko
Phys. Rev. A 89, 023411 – Published 10 February 2014

Abstract

We develop a theoretical understanding of the trapping of divalent Rydberg atoms in optical lattices. Because the size of the Rydberg electron cloud can be comparable to the scale of spatial variations of laser intensity, we pay special attention to averaging optical fields over the atomic wave functions. The optical potential is proportional to the ac Stark polarizability. We find that in the independent-particle approximation for the valence electrons, this polarizability breaks into two contributions: the singly ionized core polarizability and the contribution from the Rydberg electron. Unlike the usually employed free-electron polarizability, the Rydberg contribution depends both on the laser intensity profile and on the rotational symmetry of the total electronic wave function. We focus on the J=0 Rydberg states of Sr and evaluate the dynamic polarizabilities of the 5sns(1S0) and 5snp(3P0) Rydberg states. We specifically chose the Sr atom for its optical-lattice clock applications. We find that there are several magic wavelengths in the infrared region of the spectrum at which the differential Stark shift between the clock states [5s2(1S0) and 5s5p(3P0)] and the J=0 Rydberg states [5sns(1S0) and 5snp(3P0)] vanishes. We tabulate these wavelengths as a function of the principal quantum number n of the Rydberg electron. We find that because the contribution to the total polarizability from the Rydberg electron vanishes at short wavelengths, magic wavelengths below 1000 nm are “universal” as they do not depend on the principal quantum number n.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 December 2013

DOI:https://doi.org/10.1103/PhysRevA.89.023411

©2014 American Physical Society

Authors & Affiliations

Turker Topcu and Andrei Derevianko

  • Department of Physics, University of Nevada, Reno, Nevada 89557, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 2 — February 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×