• Rapid Communication

Memory coherence of a sympathetically cooled trapped-ion qubit

J. P. Home, M. J. McDonnell, D. J. Szwer, B. C. Keitch, D. M. Lucas, D. N. Stacey, and A. M. Steane
Phys. Rev. A 79, 050305(R) – Published 22 May 2009

Abstract

We demonstrate sympathetic cooling of a C43a+ trapped-ion “memory” qubit by a C40a+ “coolant” ion sufficiently near the ground state of motion for fault-tolerant quantum logic, while maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during ten cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(104) infidelity per cooling cycle.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 November 2008

DOI:https://doi.org/10.1103/PhysRevA.79.050305

©2009 American Physical Society

Authors & Affiliations

J. P. Home, M. J. McDonnell, D. J. Szwer, B. C. Keitch, D. M. Lucas, D. N. Stacey, and A. M. Steane

  • Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 5 — May 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×