Strong many-particle localization and quantum computing with perpetually coupled qubits

L. F. Santos, M. I. Dykman, M. Shapiro, and F. M. Izrailev
Phys. Rev. A 71, 012317 – Published 13 January 2005

Abstract

We demonstrate the onset of strong on-site localization in a many-particle system, with effective localization length smaller than the intersite distance. The localization is obtained by constructing a bounded one-parameter sequence of on-site energies that eliminates resonant hopping between both nearest and remote sites. This sequence leads to quasiexponential decay of the single-particle transition amplitude. It also leads to on-site localization of stationary many-particle states in a finite-length chain. For an infinite many-particle system, we study the time during which all states remain on-site localized. We show that, for any number of particles, this time scales as a high power of the ratio of the bandwidth of on-site energies to the hopping integral. The proposed energy sequence is robust with respect to small errors. The formulation applies to fermions as well as perpetually coupled qubits. The results show viability of quantum computing with time-independent qubit coupling.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 3 June 2004

DOI:https://doi.org/10.1103/PhysRevA.71.012317

©2005 American Physical Society

Authors & Affiliations

L. F. Santos and M. I. Dykman*

  • Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

M. Shapiro

  • Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA

F. M. Izrailev

  • Instituto de Física, Universidad Autónoma de Puebla, Puebla 72570, Mexico

  • *Email address: dykman@pa.msu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 1 — January 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×