• Open Access

Helicity, chirality, and spin of optical fields without vector potentials

Andrea Aiello
Phys. Rev. A 106, 043519 – Published 28 October 2022

Abstract

Helicity H, chirality C, and spin angular momentum S are three physical observables that play an important role in the study of optical fields. These quantities are closely related, but their connection is hidden by the use of four different vector fields for their representation, namely, the electric and magnetic fields E and B, and the two transverse potential vectors C and A. Helmholtz's decomposition theorem restricted to solenoidal vector fields entails the introduction of a bona fide inverse curl operator, which permits one to express the above three quantities in terms of the observable electric and magnetic fields only. This yields clear expressions for H,C, and S, which are automatically gauge invariant and display electric-magnetic democracy.

  • Received 16 August 2022
  • Accepted 17 October 2022

DOI:https://doi.org/10.1103/PhysRevA.106.043519

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Andrea Aiello*

  • Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058 Erlangen, Germany

  • *andrea.aiello@mpl.mpg.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 106, Iss. 4 — October 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×