Transition from correlated to single-active-electron excitation in strontium nonlinear ionization

A. Dimitriou, V. Loriot, A. Marciniak, T. Barillot, S. Danakas, F. Lépine, C. Bordas, and S. Cohen
Phys. Rev. A 105, 053106 – Published 9 May 2022

Abstract

The nonlinear single and double ionization of Sr atoms as a result of their interaction with 800-nm Ti-sapphire laser pulses of 25-fs duration is experimentally investigated within the laser intensity range I=3TWcm230TWcm2. The latter range includes the over-the-barrier intensities for both Sr and Sr+, while the corresponding Keldysh adiabaticity parameters are larger than unity. Nevertheless, for I24TWcm2 the recorded photoelectron-energy spectra show evidence of the (partial) applicability of tunneling or over-the-barrier ionization concepts, whereas below this value they can be discussed in terms of multiphoton ionization processes. More importantly, the data additionally point towards a further division of the multiphoton regime into two subranges separated roughly at I4TWcm2. Above this value above-threshold-ionization structures and the single-active-electron picture dominate. On the contrary, at the lowest laser intensities the photoelectron spectra and angular distributions reveal single ionization pathways where the remaining ion is left into excited states. These pathways also require photon absorption in the continuum, which in the case of strontium and other alkaline-earth-metal atoms is structured by the presence of doubly excited states which are embedded in it. Hence, in this case ionization proceeds via quasiresonant ionization ladders formed by these doubly excited states which are dominated by the interaction between the two valence electrons of Sr. We discuss in detail the above rich phenomenology and relevant ionization mechanisms and propose possible directions of further work towards the elucidation of the role of configuration interaction in ionization processes.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 October 2021
  • Accepted 25 April 2022

DOI:https://doi.org/10.1103/PhysRevA.105.053106

©2022 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

A. Dimitriou1,*, V. Loriot2, A. Marciniak2, T. Barillot2, S. Danakas1, F. Lépine2, C. Bordas2, and S. Cohen1,†

  • 1Atomic and Molecular Physics Laboratory, Physics Department, University of Ioannina, 45110 Ioannina, Greece
  • 2Université de Lyon, CNRS, UMR5306, Institut Lumière Matière, 69622 Villeurbanne, France

  • *Present address: Institute of Nanoscience and Nanotechnology, NCSR “Demokritos,” Aghia Paraskevi, Athens, Greece.
  • scohen@uoi.gr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 5 — May 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×