Optimal circular dichroism sensing with quantum light: Multiparameter estimation approach

Christina Ioannou, Ranjith Nair, Ivan Fernandez-Corbaton, Mile Gu, Carsten Rockstuhl, and Changhyoup Lee
Phys. Rev. A 104, 052615 – Published 22 November 2021

Abstract

The measurement of circular dichroism (CD) has widely been exploited to distinguish the different enantiomers of chiral structures. It has been applied to natural materials (e.g., molecules) as well as to artificial materials (e.g., nanophotonic structures). However, especially for chiral molecules the signal level is very low and increasing the signal-to-noise ratio is of paramount importance to either shorten the necessary measurement time or to lower the minimum detectable molecule concentration. As one solution to this problem, we propose here to use quantum states of light in CD sensing to reduce the noise below the shot noise level encountered when using coherent states of light. Through a multiparameter estimation approach, we identify the ultimate quantum limit of the precision in CD sensing, allowing for general schemes including additional ancillary modes. We show that the ultimate quantum limit can be achieved by various optimal schemes. These include using a pair of Fock-state probes in a direct sensing configuration and pairs of twin beams in an ancilla-assisted sensing configuration, for both of which photon number-resolved detection is shown to be the optimal measurement. These optimal schemes offer a significant quantum enhancement even in the presence of some additional system loss. The near optimality of a scheme using a single twin beam in a direct sensing configuration is also shown for cases where the actual CD signal is very small. Alternative optimal schemes involving single-photon sources and detectors are also proposed. This work paves the way for further investigations of quantum metrological techniques in chirality sensing.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 August 2020
  • Revised 2 March 2021
  • Accepted 27 October 2021

DOI:https://doi.org/10.1103/PhysRevA.104.052615

©2021 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Christina Ioannou1, Ranjith Nair2,3, Ivan Fernandez-Corbaton4, Mile Gu2,3,5, Carsten Rockstuhl1,4, and Changhyoup Lee1,6,*

  • 1Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
  • 2School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
  • 3Complexity Institute, Nanyang Technological University, Singapore 637460, Singapore
  • 4Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
  • 5Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore
  • 6Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

  • *changhyoup.lee@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 5 — November 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×